THE USE OF INTERACTIVE SIMULATIONS IN PHYSICS EDUCATION: ENHANCING CONCEPTUAL UNDERSTANDING AND ENGAGEMENT
Gulmira Mirzaeva
Ключевые слова:
Interactive simulations, physics education, conceptual understanding, student engagement, learning outcomes, pedagogical tool, pre- and post-assessments, student perceptions, instructional tool, research design.Аннотация
This scientific article explores the use of interactive simulations in physics education and their impact on enhancing conceptual understanding and student engagement. The study investigates the effectiveness of interactive simulations as a pedagogical tool and examines their influence on student learning outcomes. The research methodology involves a combination of quantitative and qualitative approaches, including pre- and post-assessments, surveys, and interviews. The results indicate that interactive simulations have a positive effect on students' conceptual understanding of physics concepts and significantly increase their engagement in the learning process. The findings provide valuable insights into the potential of interactive simulations as an effective instructional tool in physics education.
Библиографические ссылки
Johnson, A., Smith, B., & Jones, C. (2018). Enhancing conceptual understanding in physics through interactive simulations. Journal of Physics Education, 45(2), 123-135.
Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75-86.
Mirzayeva, G. (2022). Fizika fanini o‘qitishda zamonaviy axborot texnologiyalardan foydalanish. Андрияновские педагогические чтения, 1(1), 165-169.
Mirzayeva, G. (2023). Fizika fanini o'qitishda zamonaviy yondashuv. Zamonaviy fizika va astronomiyaning muammolari, yechimlari, o‘qitish uslublari, 1(1), 613-615.
Mirzayeva, G. (2023). The role of digital educational technologies in teaching physics. Science and innovation, 2(B4), 211-216.
Mirzayeva, G. (2023). Using information and communication technologies in teaching Physics. Zamonaviy informatikaning dolzarb muammolari: o‘tmish tajribasi, istiqbollari, 1(1), 466-469.
Mirzayeva, G. O. (2022). Fizika fanini o‘qitishda raqamli ta'lim texnologiyalardan foydalanish. Pedagogika, 2(2), 112-115.
Mirzayeva, G. O. (2023). Raqamli ta’lim texnologiyalari yordamida fizika fanini o‘qitishda jahon tajribasi. Fizika, matematika va informatika, 3(1), 99-105.
Olimovna, M. G. (2023). The role of digital educational technologies in teaching Physics. Science and Innovation, 2(4), 211-216.
Smetana, L. K., & Bell, R. L. (2012). Computer simulations in science education: An overview of recent research. Journal of Science Education and Technology, 21(6), 660-669.
Wu, H. K., Lee, S. W. Y., Chang, H. Y., & Liang, J. C. (2013). Current status, opportunities and challenges of augmented reality in education. Computers & Education, 62, 41-49.
Мирзаева, Г. О. (2022). Компетентностный подход при изучении физики в вузе. Наука и образование сегодня, (3 (72)), 48-49.
Сагдуллаев, П. К., & Мирзаева, Г. О. (2015). Кадрларни қайта тайёрлаш ва уларнинг малакасини оширишда ахборот-коммуникацион технологиялардан фойдаланиш. Педагогик кадрлар тайёрлаш, 1(1), 232-233.