

ТЕРМОЭЛЕКТРИЧЕСКИЙ БАТАРЕЙКИ КОНСТРУКЦИИ АНАЛИЗ ДЕЛАТЬ

Атажанов М.О.

Андижанский машиностроительный институт **Нематова Мохичехра Нодиржан кизи**

студентка 3 курса кафедры «Энергосбережение и энергоаудит», Андижанский машиностроительный институт, факультет «Электротехника»

Аннотация - Термоэлектричество элементы когда напряжение урожай Их. два производительность в середине температура разница есть поверхности Зеебек модуля эффективный производительность для высокий его два сторона в середине температура градиент Требовать будет сделано . Это на бумаге термоэлектрический в деталях обучение метод данный лаборатория генераторов (ТЭГ) модель через , чтобы обеспечить их производительность для необходимый был температура разница .

Ключ слова — Термоэлектрический генератор, Температура, Разница, Электричество. энергия коллекция системы, альтернатива энергия источник

Введение

термоэлектрический генераторы альтернатива являются источниками из промышленности полученный напрасно тратить от жары который использует энергия работа выпускать или другой антропогенный деятельность [1, 2]. Разумно движущийся частей отсутствие и длинный продолжительность жизни чтобы увидеть срок есть им интерес повысился продолжается [3, 4]. для особенно важный Зеебек от эффекта использовал без модулей эффективность операция между высокий температура разница это достижение их работающий поверхности . Нагревать обмен проверять для обычно процесс моделируется [5, 6]. Этого цель статья в деталях анализ делать метод подарок от выполнения состоит из известен один лаборатория модель через термоэлектрический модули , они для необходимый был температура разница предоставлять операция . ТЭГ также проверяется при охлаждении / обогреве режим .

Генератор режим работающий термоэлектрический элемента Схема представлена на рис. 1 . Он один на кончике металл мост 2 с , второй на кончике и 1 и 3 металлические контакты с связанный другой по проводимости два

полупроводника I и II из ветвей состоит из Два материала контакты каждый другой по температуре если - Т1 и Т2, термоэлектрические поток контактов на схему брать проходит . Пьяный схема термо ЭДС случаться будет — Э:

$$E = \int_{T_2}^{T_1} [\alpha_1(T) - \alpha_2(T)] dT$$

этот на земле : a1, a2 термо ЭДС коэффициенты . Из материалов который ветки I и II из ветвей сделан . Если a1, a2 зависимы если температура в соответствии с не имеет значения , то :

$$E = (\alpha_1 - \alpha_2)(T_1 - T_2)$$

Если термоэлектрический в цепочке последовательно один сколько если включено термопары , затем общий термоэ.мф . Считается последовательно включено ЭДС сумма как определен источники .

Термопара эффективность коэффициент (CoE). ага энергии держать закон с определен . Термопара через нагревать поток счет полученный без и электричество ток I, через внешнюю нагрузку R течет. в случае :

$$Q_1^I + Q_1^{II} - Q_2^I - Q_2^{II} = I^2 R$$

$$\eta = \frac{Q_1^I + Q_1^{II} - Q_2^I - Q_2^{II}}{Q_1^I + Q_1^{II}}$$

В числителе изданный электричество власть представляет нагрузка R, а знаменатель — запас данный нагревать власть Электрический до нет когда я (без нагрузки R) , это нагревать поток только нагревать проводимость с определенный материал:

$$-ks\frac{dT}{dx} = \frac{s}{l} \int_{T_2}^{T_1} kdT,$$

этот где k - тепло проницаемость коэффициент .

Нагрузка R на цепи с примите это во внимание получать требуется джоулевый нагрев и Томпсон эффект счет получать отопление :

137

$$Q_J = \frac{I^2}{s} \int_0^l \rho \, dx,$$

$$Q_{J} = \frac{I^{2}}{s} \int_{0}^{l} \rho dx,$$

$$Q_{T} = I \int_{T_{2}}^{T_{1}} \tau_{T} dT,$$

Здесь: QJ и КТ подходящий Джоулево нагревание и Томпсон отопление, р- сравнение сопротивление, Т τ- Томпсона коэффициент.

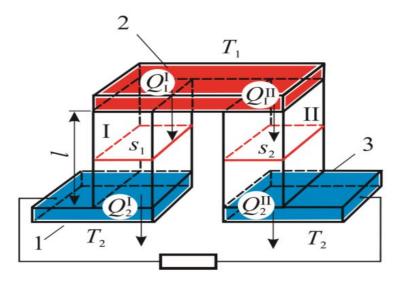
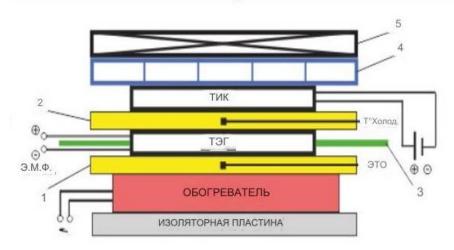



Рисунок 1. термоэлектрический генератор: 1, 2, 3 – переключение металл тарелки ; $Q_1 I$, $Q_2 II$ - входящий нагревать течения ; $Q_2 I$, $Q_2 II$ - исходящие нагревать течения; Т 1, Т 2 – подходят соответственно Горячий и Холодный на стороне температуры ; π - ветки высота S1 , S2 - ответвления разделов поля .

Фигура 2. термоэлектрический батареи конструкция: 1, 2 – неправильно термопроводники; 3 - сплошной остальные бумаги изоляционный тарелка; 4

— ТИК горячий на тарелке нагревать принятие делатель ; 5 — тепло дисперсионная наука; Холодный , Горячий - генератор Горячий и Холодный на стороне температура измерять для термопары .

ТИК Горячий сторона обогрев для сторон 50 x 50 мм и переменная напряжение с два обогрев тарелка дано Их каждый один 125 Вт властвовать иметь ТИК Холодный сторона охлаждение ТЕС1-12710 термоэлектрический с боковинами 40 x 40 мм для холодильник использованный Термопары защита делать и температура емкость увеличивать для тарелки от 1 инженер-электрик медь обогреватель и между генератором и кулер и между генератором будет размещено . Медь тарелки используется , потому что его нагревать проводимость k = 401 Вт /(мК) серебра после большинство высокая -k = 429 Вт /(мК).

Адекватный результаты получать для большой важный иметь исследование - температура разница ДТ измерять метод . Температура Т1 - Т2 разницы ценить сразу подсчет исходящий К- типа зонды с работающий тонкий дифференциал термометр использованный Медь тарелок другой у них тоже есть цель внутри глухой в дырах дифференциал термометра температура зонды установлен . Это было создано к точке большинство около температура измерять исследований верно выполнение максимум уровень обеспечивает .

ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ

Экспериментальный полученный Результаты на базе генератора ТЭГ SP 4818 и в холодильнике производительность режим следующее выводы выпускать может :

- 1) В стадии изучения образовать термоэлектрический элемент делает и соразмерный симметричный напряжение и поток температура разница в ДТ.
- 2) ЭДС максимум измеренный ценить . от 5,8 В выше , и от 1,4А высокий короткий связь поток
- 3) Термос электродвижущая сила напряжений коэффициент подсчет выход : 48 мВ/К.
 - 4) Минимальный интерьер сопротивление получается : r0= 4,15 Ом.
- 5) Генератор власти максимум значение 8 Вт при DT 120°С. модуля площадь равна 16 см 2 , то есть на 1 см 2 максимум мощность 0,5 Вт.
- 6) ТЭГ исследования в создании успешный использовать возможный температура разницы достаточно уровень из предоставленного после их к выходам электричество поставлять . Опыт есть до $DE = 84^{\circ}$ C достаточно ,

подходит соответственно максимум 100°C горячий сторона и Холодный сторона 16°C.

Все цифры сильный зависимость что там есть шоу температура разница в соответствии с работа изданный власть

Рисунок 3. Температура разница в том, чтобы создать DT для стенда Фото

Рисунок 4. К фото получать в течение экспериментальный устройство Фото функции

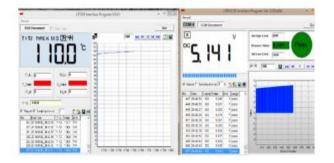


Рисунок 5. Измерение инструментов программное обеспечение поставлять.

ЗАКЛЮЧЕНИЕ

Термоэлектрик на рис. 3 модулей каждый другой температура режимы характеристики получать для экспериментальный монтаж сделанный повысился . Установка $DT > 200^{\circ}C$ температура разница предоставлять

возможность иметь Рис. 4 конструкция изученных ТЭГ каждый два на стороне температура максимум точность с сразу измерять давать возможность дам . Модуль параметры описательный один ряд функции полученный и подарок будет сделано . Эксперименты результаты примечание достигать и снова работы инновационный метод используется . Персональный к компьютеру связанный конечно измерять устройства Замеры были. для используется . Программное обеспечение поставка Рисунок 5 время между отчеты письмо получать и результаты хранилище давать возможность дает , это исследовать процесс значительный уровень делает это проще и точность увеличивается . Этот метод ему самому считается уникальным , потому что исследовать согласно , оно существует такой в разработках неиспользованный .

Литературы

- 1. М.О. Атажонов. Фото-термоэлектрический преобразователь плазменного нанохол массива. Научно-технический журнал «Машиностроения». № 5. I том 2022. Ст. 705-711.
- 2. М.О. Атажонов. "Quyosh paneli sirtini tozalash tizimi" Машинасозлик илмий-техника журнали. ISSN 2181-1539. Маҳсус сони №1. Бет. 1748-1752
- 3. М.О.Атажонов. Исследование темогенераторов как альтернативных источников энергии. НамМТИ, Международная научно-практическая конференция. 2023г, 3-4 may, Ст. 118-122.
- 4. M.O. Atajonov., S.J. Nimatov., A.I. Rahmatullayev. Formalization of the dynamics of the functioning of petrochemical complexes based on the theory of fuzzy sets and fuzzy logic. AIP Conference Proceedings, Published 2023-01-05. DOI: https://doi.org/10.1063/5.0112403.
- 5. М.О. Атажонов. Фото-термоэлектрическое преобразование массива плазменных нанодырок. НамМТИ, Международная научно-практическая конференция. 28-29-октябрь, Наманган, 2022. Ст. 201-204.
- 6. M.O. Atajonov «Dinamik ob'yektlarning texnologik holatlarini tashxislashning neyro-noqat'iy modellari va algoritmlari» // Monografiya. Fargʻona.: «Poligraf Super Servis» 2023. 94 b.
- M.O. Atajonov. Конструкция фототермоэлектрических преобразователей. International journal of advanced research in education, technology and management. ISSN:2349-0012. Vol.2, Issue 12. doi.10.5281_zenodo.10315959
 Pp. 236-244
- 8. Kholiddinov, I. K., Musinova, G. F., Yulchiev, M. E., Tuychiev, Z. Z., & Kholiddinova, M. M. (2020). Modeling of calculation of voltage unbalance factor using Simulink (Matlab). *The American Journal of Applied sciences*, 2(10), 33-37.

- 9. Yulchiev, M. E., & Qodirov, A. A. O. (2020). Electricity Quality And Power Consumption In Low Power (0.4 Kv) Networks. *The American Journal of Engineering and Technology*, 2(09), 159-165.
- 10. Yulchiev, M. E. (2023). POWER QUALITY IN THE LOW-VOLTAGE AIR NETWORK. Spectrum Journal of Innovation, Reforms and Development, 15, 79-84.
- 11. Эралиев, А. Х., Юлчиев, М. Э., & Латипова, М. И. (2020). ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ И ОБЪЕМ ИСПЫТАНИЙ ТРАНСФОРМАТОРОВ ТОКА. *Universum: технические науки*, (12-5 (81)), 39-43.
- 12. Mash'albek, E. (2022). CONTENTS, PROBLEMS AND DIDACTICAL BASIS OF TEACHING THE SUBJECT" ELECTRIC NETWORKS AND SYSTEMS" IN THE ELECTRONIC EDUCATIONAL ENVIRONMENT. European International Journal of Multidisciplinary Research and Management Studies, 2(04), 341-349.
- 13. Yulchiyev, M. E., & Salokhiddinova, M. (2023). ORGANIZATION OF MULTI-STAGE ENHAT FOR MEDIUM AND LARGE POWER INDUSTRIES OR ENERGY SYSTEM. World scientific research journal, 20(1), 13-18.
- 14. Muslima, S. (2023). APPLICATION OF A HYBRID SYSTEM OF RENEWABLE ENERGY SOURCES IN THE SUPPLY OF ELECTRICITY THROUGH A MULTIFUNCTIONAL DEVICE. International journal of advanced research in education, technology and management, 2(10).
- 15. Zuhritdinov, A., & Xakimov, T. (2023). STUDY OF TEMPERATURE DEPENDENCE OF LINEAR EXPANSION COEFFICIENT OF SOLID BODIES. *International Bulletin of Applied Science and Technology*, *3*(5), 888-893.
- 16. Abbosbek Azizjon-oʻgʻli, A., & Nurillo Moʻydinjon oʻg, A. (2023). GORIZONTAL OʻQLI SHAMOL ENERGETIK QURILMALARINING ZAMONAVIY KONSTRUKSIYALARI.
- 17. Abdulhamid oʻgʻli, T. N., & Botırjon oʻgʻli, A. M. (2024). FOTOELEKTRIK STANSIYALARNING TIZIMLARINI HISOBLASH TURLARI. *Oriental Journal of Academic and Multidisciplinary Research*, 2(3), 49-54.
- 18. Abdulhamid oʻgʻli, T. N., & Botırjon oʻgʻli, A. M. (2024). FOTOELEKTRIK STANSIYALARDAGI INVERTORLARNI XISOBLASH. *Oriental Journal of Academic and Multidisciplinary Research*, 2(3), 43-48.
- 19. Abdulhamid ogli, T. N., & Axmadaliyev, U. A. (2024). DEVELOPMENT AND APPLICATION OF 3rd GENERATION SOLAR ELEMENTS. Лучшие интеллектуальные исследования, 14(2), 219-225.

- 20. Abdulhamid ogli, T. N., & Azamjon ogli, S. H. (2024). IMPLEMENTATION OF SMALL HYDROPOWER PLANTS IN AGRICULTURE. Лучшие интеллектуальные исследования, 14(2), 182-186.
- 21. Abdulhamid ogli, T. N., & Yuldashboyevich, X. J. (2024). ENERGY-EFFICIENT HIGH-RISE RESIDENTIAL BUILDINGS. Лучшие интеллектуальные исследования, 14(2), 93-99.
- 22. Abdulhamid ogli, T. N., & Yuldashboyevich, X. J. (2024). SOLAR PANEL INSTALLATION REQUIREMENTS AND INSTALLATION PROCESS. Лучшие интеллектуальные исследования, 14(2), 40-47.
- 23. Abdulhamid ogli, T. N., Axmadaliyev, U. A., & Botirjon ogli, A. M. (2024). A GUIDE TO SELECTING INVERTERS AND CONTROLLERS FOR SOLAR ENERGY DEVICES. Лучшие интеллектуальные исследования, 14(2), 142-148.
- 24. Topvoldiyev, N. (2023). KREMNIY ASOSIDAGI QUYOSH ELEMENTILARI KONSTRUKTSIYASI. *Interpretation and researches*, *1*(1).
- 25. Abdulhamid oʻgʻli, T. N., & Sharipov, M. Z. (2023). ENERGY DEVELOPMENT PROCESSES IN UZBEKISTAN. Science Promotion, 1 (1), 177–179.