ERKIN OQIMLI DARYO VA KANALLARGA MOʻLJALLANGAN MIKRO GES TADQIQOTI MATLAB MODELI ORQALI TADQIQ QILISH

Jabborov Ibrohim Raxmatilla oʻgʻli

Toshkent davlat texnika universiteti Olmaliq filiali assistenti E-mail: ibrohimjabborov8@gmail.com

Annotatsiya:Mikro GESni erkin oqimli daryo va kanallarga moslashtirishda asosiy elektromexanik va elektromagnit ekspluatatsion xarakteristikalarini Matlab paketi Simulink dasturi asosida modellashtirish orqali tahlil qilingan. Dissertatsiya ishida Simulink dasturida modellashtirishning umumiy ma'lumotlariga ega bo'lib, modelni tayyorlash usullarini umumiy parametrlarini o'rnatishni va hisoblashni amalga oshirish ishlari ko'rib chilgan.

Kalit so'zlar: Mikro GES, Simulink MATLAB, Array(massiv),Structure (Struktura), qo'zg'atish EyuK, Diagnostika, Output options, Solver options.

Simulink dasturi MATLAB paketining ilovasi hisoblanadi. Simulink dasturi yordamida modellashtirish vizual dasturlash pirinsipi bo'yicha amalga oshadi, yani foydalanuvchi ekranda standart bloklar kutubxonasi orqali qurilmaning modelini tuzadi va hisoblashni amalga oshiradi.

Bunda foydalanuvchi klassik modellash usullaridan farqli ravishda dasturlash tillarini va matematikalarning sonli metodlarini bilishi shart emas.

Simulink MATLABning mustaqil instrumenti sanaladi va u bilan ishlaganda MATLAB hamda uning ilovalarini bilish talab etilmaydi. Boshqa tomondan esa MATLAB funksiyalari va uning boshqa instrumentlariga kirish ochiq qoladi va ularni Simulinkda qo'llash mumkin bo'ladi.

Modellashtirish vaqtida gifferensial tenglamalarni yechish metodlarini tanlashi yoki modellash vaqtini o'zgartirishi mumkin. Modellash vaqtida tizimda kechayotgan jarayonlarni kuzatish ham mumkin. Modellashtirish natijalarini grafik yoki jadval ko'rinishida olish mumkin. Simulink dasturini ishga tushirish uchun dastavval MATLAB paketini ishga tushirish kerak. 1-rasmda MATLAB paketining asosiy darchasi ko'rsatilgan.

MATLAB				
<u>File E</u> dit <u>V</u> iew We <u>b W</u> indow <u>H</u> elp				
🗋 🗃 🐇 🖻 🛍 🗠 🖙 🎁 🎁 🥐 Current Directory: C: Matlab6\work 💽 🛄				
Simulink				
To get started, select "MATLAB Help" from the Help menu.				
>> simulink				
Ready				

1- rasm. MATLAB paketining asosiy darchasi

Erkin oqimli daryo va kanallarga mikro GESni moslashtirish modelini yaratish. Modelning murakkab blok-sxemasini bloklarni guruxlash orqali soddalashtirish mumkin. Soddalashtirilgan blok-sxemalarni nimtizimga birlashtirish mumkin. Nimtizim quyidagi afzallliklarga ega: bloklar sonini kamaytiradi va funktsional birbiriga bog'liq bo'lgan bloklarni bir guruhga birlashtirish imkoni tug'iladi, hamda ierarxik blok-sxemalarni yaratish mumkin.

Hisoblash parametrlarini o'rnatish va uni bajarish.Hisoblash ishlarini bajarishdan oldin hisoblash uchun kerak bo'lgan parametrlarni berish kerak. Parametrlar boshqarish panelidagi Simulation/Parameters menyusi yordamida amalga oshiriladi (2 - rasm).

Hisoblash parametrlarini o'rnatish darchasi 4 ta qismdan iborat:

1. Solver (hisoblash) - modelni hisoblash parametrlarini o'rnatish.

2. Workspace I/O (ishchi chegaradagi qiymatlarni kiritish chiqarish) - MATLABning ishchi chegarasidagi qiymatlar bilan o'rnatish parametrlarini almashtirish.

3. Diagnostics (Diagnostika tashxiz) - diagnostikalash rejimidagi parametrlarni tanlash.

4. Advanced (Qo'shimcha) - qo'shimcha parametrlarni o'rnatish.

Modelni hisoblash parametrlarini o'rnatish Solver da joylashgan boshqarish elementlari yordamida amalga oshiriladi. Bu elementlar uch guruhga bo'lingan (2rasm):

Simulation Parameters: untitled				
Solver Workspace I/O Diagnostics Advanced				
Simulation time Start time: 0.0 Stop time: 10.0				
Solver options Type: Variable-step 💌 ode45 (Dormand-Prince)				
Max step size: auto Relative tolerance: 1e-3				
Min step size: auto Absolute tolerance: auto				
Initial step size: auto				
Output options				
Refine output Refine factor: 1				
OK Cancel Help Apply				

2-rasm. Boshqarish darchasi

Simulation time (modellash intervali yoki boshqacha aytganda hisoblash vaqti), Solver options (hisoblash parametrlari), Output options (chiqish parametlari).

Modelni hisoblash parametrlarini o'rnatish, Simulation time (modellash intervali yoki hisoblash vaqti). Hisoblash vaqti boshlang'ich (Start time) va oxirgi (Stop time) vaqtning qiymatlari ko'rsatilgan holda beriladi. Boshlang'ich vaqti odatda 0 (nol) beriladi. Oxirgi (tugash) vaqti yechiladigan masala shartidan kelib chiqqan holda beriladi.

Solver options (Hisoblash parametrlari). Hisoblash parametrlarini tanlashda modellash usulini (Type) va tizimning yangi holatini hisoblash metodini ko'rsatish lozim. Type parametri uchun ikkita variant o'rinli - qayd etilgan (Fixed - step) yoki o'zgaruvchan (Variable - step) qadamli. Odatda Variable - step uzliksiz tizimlarni Fixed - step esa diskret tizimlarni modellashda qo'llaniladi.

Tizimning yangi holatini hisoblash metodining ro'yxati bir nechta variantdan iborat bo'ladi. Birinchi variant (discrete) diskret tizimlarni hisoblashda qo'llaniladi. Qolgan metodlar esa uzliksiz tizimlarni modellashda qo'llaniladi. Bu metodlar o'zgaruvchan (Variable - step) va qayd etilgan (Fixed - step) vaqt qadamlari uchun turlicha bo'ladi. Ular differensial tenglamalar tizimini yechishga mo'ljallangan.

Fixed - stepni tanlashda kerakli chegarada Fixed - step size tekstli maydon hosil bo'ladi. Bu maydon modellashtirish qadamining qiymatini ko'rsatadi (8- rasm). Modellashtirish qadamining qiymati avtomatik holda (auto) o'rnatiladi.

Solverning pastki qismida modellashtiriladigan tizimlarning chiqish signallarining (Output options) parametrlari o'rnatiladi. Buni amalga oshirish uchta variantlardan birortasi qo'llaniladi:

1. Refine output (Korrektivlashtirilgan chiqish) - To Workspace bloki yordamida MATLABning ishchi chegarasida saqlangan modellash vaqti yoki signallarning diskretliligini qayd etishni o'zgartirish imkonini beradi. Diskretlilikning qiymati o'ng tomonda joylashgan redaktorlash qatorida (Refine factor) bajariladi. Refine factor ning qiymati 1ga teng, yani qayd etish Dt = 1 qadam bilan amalga oshadi. Agar Refine factor 2 ga teng bo'lsa, u holda signallarning ikkinchisi qayd etiladi, agar bu qiymat 3 ga teng bo'lsa, u holda signallarning, uchinchisi qayd etiladi va hakozo.

📣 Sim	🖇 Simulation Parameters: untitled 📃 🗖 🖂 🖂					
Solver Workspace I/O Diagnostics Advanced						
Simulation time Start time: 0.0 Stop time: 10.0						
- Solve Type	Solver options Type: Fixed-step Image: Image: fixed-step					
Fixed	l step size: auto		Mode: Auto Auto Sing Multi	∎ IeTasking Tasking		
Outp Refi	ut options ne output	V	Refine f	iactor: 1		
		οκ	Cancel	Help	Apply	

3 – rasm. Hisoblash qadamini tanlashda Solver darchasi

2. Produce additional autput (Qo'shimcha chiqish) - modelning berilgan vaqtdagi parametrlarini qo'shimcha ravishda qayd etadi.

3. Produce specified autput only (faqat berilgan chiqishni formatlash) - modelning chiqish parametrlarini output times maydonida ko'rsatilgan berilgan vaqt uchun o'rnatadi.

Almashtirish parametrlarini ishchi chegara bilan birga o'rnatish. MATLABning ishchi chegarasidagi kirish va chiqishni boshqarish elementlari Workspace I/O da joylashgan (4 - rasm).

Workspace I/O uchta maydonga bo'lingan:

1.Load from workspase (ishchi chegaradan yuklab olish). Agar Input bayroqchasi (Kirish qiymatlari) o'rnatilgan bo'lsa, tekst maydonidan o'ngda joylashgan qismida qiymatlar formatini kiritish mumkin. Initial State (bo'shlang'ich holat) bayroqchasi o'rnatilgan bo'lsa tekst maydoni bilan bog'liq bo'lgan holda modelning bo'shlang'ich holatining parametrlarini o'zida jamlagan o'zgaruvchining nomini kiritishi mumkin.

2. Save to workspace (ishchi chegarada yozish) - MATLAB ning ishchi chegarasida signallarning qiymatini chiqaradi va ularning nomini beradi.

99

3. Save options (yozuv parametrlari) - Ishchi chegaraga o'zgaruvchilarni uzatayotgandagi qatorlar sonini beradi. Agar Limit rows to last bayroqchasi o'rnatilgan bo'lsa, kiritish maydonida uzatilayotgan qatorlar sonini ko'rsatish mumkin. Agar bayroqcha o'rnatilmagan bo'lsa, u holda hamma qiymatlar uzatiladi. Decimation parametri ishchi chegarada o'zgaruvchilarning yozuvi qadamini beradi.

Simulation Parameters: untitled						
Solver Workspace I/O Dia	agnostics	Advanced				
Load from workspace		Save to workspace				
🔲 Input: 🛛 [t. u]		🔽 Time:	tout			
🔲 Initial state: 🕅 xInitial		🗖 States:	xout			
		🔽 Output:	yout			
		Final state:	xFinal			
Save options ↓ Limit data points to last: 1000						
Decimation:	1					
Format:	Array		•			
OK Cancel Help Apply						

4 - rasm. Modelning parametrlarini o'rnatuvchi Workspace I/O dialog darchasi

Format parametri ishchi chegaraga uzatiladigan qiymatlarning formatini beradi. Array(massiv), Structure (Struktura), Structure With Time vaqt qo'shimcha maydonli struktura kabi formatlar ham mavjud.

Modelni diagnostlash parametrlarini o'rnatish.Diagnostics parametri (5- rasm) MATLAB ning buyruqlar darchasiga Simulink ni chiqarishdagi diagnostik ma'lumotlarni o'zgartirish va modelni diagnostlashning qo'shimcha parametrlarini o'rnatadi.

Modellshtirish jarayonida Simulink da aniqlangan xatoliklar va muammolar ishlab chiqaruvchi tomonidan MATLAB darchasidan chiqarilib tashlanadi.

Simulation Parameters: unti Solver Workspace 1/0 Diagnostics	tled E 2
Simulation options Consistency checking: none 💌 Configuration options:	Bounds checking: none
-l sample time in source Algebraic loop Block priority violation Check for singular matrix Data overflow int32 to float conversion Invalid FcnCall connection Min step size violation MultiTask rate transition S-function upgrades needed	Warning Warning Warning Warning Warning Error Warning Error None
ΟΚ	Cancel Help Apply

5 – rasm. Diagnostics modelning parametrlarini o'rnatuvchi darcha

Hisoblashni Simulation/Start menyusini tanlash bilan yoki instrumentlar panelidagi ▶ Instrumenti yordamida boshlanadi.

Hisoblash ishini Simulation/stop menyusi yoki Iinstrumenti yordamida tugatish mumkin. Hisoblashni (menyudagi) Simulation/Pause menyusi yordamida to'xtatish va keyin (menyudagi) Simulation /Continue menyusi bilan davom ettirish mumkin.

Ishni tugatish uchun model faylda saqlanadi, model darchasi kutubxona ko'rsatgichi va MATLAB asosiy paketining darchasi yopiladi.

MATLAB paketi SIMULINK dasturi asosida erkin oqimli daryo va kanallar uchun mikro GESni modellashtirish orqali tadqiqot qilish. Erkin oqimli daryo va kanallar uchun mikro GESni passiv yuklamada tekshirish va tadqiqot ishini bajarish uchun adabiyotlar hamda erkin oqimli daryo va kanallar uchun mikro GESda qo'llaniladigan sinxron generator asosiy tenglamalari tahlil qilindi.

6-rasm. MatLabdagi mikro GESda tadqiqot o'tkazish modeli

O'rganishlar natijasidagi asosiy tenglamalar asosida imitatsion modeli qurilib tadqiqot ishlari olib boriladi.

Imitatsion model yordamida erkin oqimli daryo va kanallarga moslashtirilgan mikro GESning asosiy ko'rsatkichlarini olish ustida tadqiqotlar olib borildi.

Bu qurilma o'z ichiga quyidagilarni olgan:

-Power System Blockset/Machines kutubxonasidan uch fazali sinxron mashina Simplified Synchronous Machine;

-Power System Blockset/Machines kutubxonasidan mashina holatining parametrlarini Machines Measurement o'lchagich;

-Power System Blockset/Exstras/Three-Phase Library kutubxonasidan uch fazali yuklamani 3-Phase Load;

-yuklamadagi kuchlanishning ta'sir etuvchi qiymatini o'lchovchi RMS.Vs bloki;

-Power System Blockset/Extres/Measurements kutubxonasidan yuklamadagi kuchlanishning amplitudasi va boshlang'ich fazasi va EYuKni o'lchaydigan Fourier, Fourier 1 bloki;

-Simulik/Sinks bosh kutubxonasidan o'lchanilgan kattaliklarning sonini ko'rsatuvchi Display1, Display2, Display3, bloklari va sinxron mashinaning yakor tokini, tezligi va elektromagnit momentini kuzayuvchi Scope bloki;

-Simulink/Source bosh kutubxonasidan qo'zg'atish EYuK ni beruvchi E₀ bloki;

-Simulink/Sygnal & System bosh kutubxonasidan Mux, Demax bloklari.

Sinxron mashina parametrlarini o'rnatish darchasi 3.18-rasmda ko'rsatilgan.

7-rasm. Sinxron mashina kattaliklarini o'rnatish darchasi

Darchaning maydonchasida ketma-ket quyidagilar beriladi:

- mashina stator chulg'amining ulanish sxemasi; Bu maydonning chiqish menyusida nolli va nolsiz yulduz ulanishni tanlash mumkin;

- to'la quvvat (VA), liniya kuchlanishini ta'sir etuvchi qiymati va chastota;

- inersiya momenti (kg·m), dempfirlash koeffisienti, juft qutblar soni;
- yakor (stator) chulg'amining aktiv qarshiligi va induktivligi;
- modelni ishga tushirishning boshlang'ich shartlari.

8-rasmda mashina o'zgaruvchan holatini o'lchash blokining o'rnatish darchasi keltirilgan.

8-rasm. Mashina holati o'zgaruvchan kattaliklarini o'lchash uchun o'rnatish darchasi

Mashinsning tipi Machine type maydonchasidan tanlanadi. Chap tomondagi bayroqcha o'lchanadigan o'zgaruvchi holatlarini bildiradi. 9-rasmda ta'sir etuvchi o'lchagichni o'rnatish bloki ko'rsatilgan. Blokning o'rnatish darchasida chastota beriladi.

F		24					
Ľ	Function Block Parameters: RM5.¥s	<u> </u>					
Г	-RMS (mask) (link)	_					
	This block measures the root mean square value of instantaneous current or voltage signal connected to the input of the block. The RMS value is calculated over a running window of one cycle of the specified fundamental frequency.						
[Parameters						
	Fundamental frequency (Hz):						
	<u>a</u>						
	<u>QK</u> <u>Cancel</u> <u>H</u> elp <u>Apply</u>						

9-rasm. Ta'sir etuvchi kattaliklarni o'lchashni o'rnatish bloke

Fourier, Fourier1 bloklarini o'rnatish darchasining maydonchasida o'lchanadigan kuchlanishning chastotasi va birinchi garmonikasi beriladi. Kuchlanish va EYuK orasidagi fazalar farqiga yuklanish burchagi deyiladi.

10-rasmda yuklamaning parametrlarini o'rnatish darchasi ko'rsatilgan. Darcha maydonchasida generatorning kuchlanishi va chastotasiga moslashtirilgan liniya kuchlanishining ta'sir etuvchi qiymati va chastotasi (3.18-rasm), aktiv, reaktiv (induktiv) va reaktiv (sig'imiy) yuklanish quvvati beriladi.

🙀 Sink Block Parameters: 3-Phase Load 🛛 🔀					
- 3-phase parallel RLC load (mask) (link)					
This block implements a three-phase parallel RLC load connected in Y configureation, with the neutral connected to the ground. Each phase consist of one parallel RLC load block connected between the phase input and the ground.					
Parameters					
Nominal phase-phase voltage (Vrms):					
380					
Nominal frequency (Hz):					
50					
Three-phase active power P (W):					
100e3*0.1					
Three-phase inductive reactive power QI (var)					
0					
Three-phase capacitive reactive power Qc (var) :					
100e3*0.1					
<u>□</u> K <u>C</u> ancel <u>H</u> elp <u>Apply</u>					

10-rasm. Yuklama kattaliklarini o'rnatish darchasi

Bu quvvatni berishda qulay bo'lishi uchun generator nominal quvvatini koeffitsiyetga ko'paytirish lozim.

🙀 Configuration Parameters:	synch_gen/Configura	tion					×
Select:	Simulation time						
Select Solver Data Import/Export Data Import/Export Opimization Data Integrity Conversion Connectivity Conversion Connectivity Model Referencing Hardware Implementation Model Referencing Comments Symbols Custom Code Debug Interface	Start time: Otto Start time: Otto Type: Max step size: Initial step size: Zero crossing controt:	Variable-step auto auto auto Use local settings	×	Stop time: 1 Solver: Relative tolerance: Absolute tolerance:	ode23tb (stiff/TR- auto auto	BDF2)	
			<u>(</u>	<u>DK</u> Canc	el <u>H</u> elp	Apply	

11-rasm. Modellashtirish kattaliklarini o'rnatish darchasi

Qo'zg'atish EYuK (E_0 bloki)ning qiymati 24 V o'zgarmay qoladi. 11-rasmda modellashtirish parametrlarini o'rnatish darchasi ko'rsatilgan.

Generator yakori fazasidagi toklarning oshish qiymatlarini, tezligini va quvvatini ossillograf ekranida kuzatish mumkin (3.23-rasm).

13-rasm. Mikro GES qurilmasi sinxron generatorining salt ishlashda stator chulg'amidan chiqayotgan kuchlanishi

14-rasm. Mikro GES qurilmasi sinxron generatorining stator cho'lg'amida tokni o'zgarishi I = f(t)

Foydalanilgan adabiyotlar ro'yxati:

- Jabborov, I. R. "KICHIK QUVVATLI MIKRO GESNING O 'ZBEKISTON ENERGETIKASIDA TUTGAN O 'RNI VA ULARNING RIVOJLANISH BOSQICHLARI." *Research Focus International Scientific Journal* 2.5 (2023): 41-47.
- 2. Jabborov, I. R., and I. A. Usmanaliyeva. "KICHIK QUVVATLI MIKROGESLARNI ERKIN OQIMLI DARYO VA KANALLARDA QO'LLASH UCHUN MOSLASHTIRISH." World scientific research journal 3.1 (2022): 217-221.
- Toirov, Olimjon, et al. "Power Losses Of Asynchronous Generators Based On Renewable Energy Sources." *E3S Web of Conferences*. Vol. 434. EDP Sciences, 2023.
- Муминов, Махмуджон Умурзакович, and Абдурахмон Юлдашевич Сотиболдиев. "Разработка бесщёточного мини гидро-солнечного синхронного генератора." *Universum: mexнические науки* 1-3 (94) (2022): 43-45.
- 5. Tursunboyevich, Sarvar Ganiev, and Abduraxmon Sotiboldiyev Yuldashevich. "YUQORI ENERGETIK SAMARADORLIKKA EGA VENTILYATSIYA TIZIMINI YARATISHNING ZAMONAVIY TENDENTSIYALARI." Лучшие интеллектуальные исследования 11.5 (2023): 195-201.
- 6. Yuldashevich, Sotiboldiyev Abduraxmon, Yoldoshev Ozodbek Nodirovich, and Bekmurodov Elmurod Dilmurod o'g'li. "QAYTA TIKLANUVCHAN ENERGIYA MANBALARIDAN FOYDALANISH TAHLILI." *TADQIQOTLAR* 30.3 (2024): 3-12.

- 7. Yuldashevich, Sotiboldiyev Abduraxmon, and Bekmurodov Elmurod Dilmurod o'g'li. "O 'ZBEKISTONDA KICHIK GIDRO ENERGETIK RESURSLARIDAN FOYDALANISH HOLATI VA IMKONIYATI." *TADQIQOTLAR* 30.3 (2024): 19-25.
- 8. Yuldashevich, Abduraxmon Sotiboldiyev.
 "MIKROGIDROELEKTROSTANSIYA DETALLARI UCHUN MATERIALLAR TANLASH." *Journal of new century innovations* 43.2 (2023): 42-46.
- 9. Muminov, M. U., A. Yu Sotiboldiyev, and M. M. Gulomaliev. "MIKROGES GIDROAGREGAT MEXANIZMLARINI TADQIQ ETISH." Евразийский журнал технологий и инноваций 2.3 (2024): 7-10.
- 10. Yuldashevich, Sotiboldiyev Abduraxmon, and Yoldoshev Ozodbek Nodirovich. "SHAMOL ENERGETIKASINING RIVOJLANISH TARIXI." *TADQIQOTLAR* 30.3 (2024): 13-18.
- 11.Abduraxmon, Abduraxmon, and Ozodbek Yoldoshev. "QUYOSH BATAREYASI YORDAMIDA ISHLAYDIGAN NASOSLARNI AFZALLIK TOMONLARI." *Ta'limning zamonaviy transformatsiyasi* 3.1 (2024): 101-105.
- 12.Muminov, M. U., et al. "Analysis of the state of the issue and review of the application of renewable energy sources to power excitation systems of synchronous machines." *JOURNAL OF ENGINEERING, MECHANICS AND MODERN ARCHITECTURE* 3.2 (2024): 34-37.
- 13. Yuldashevich, Sotiboldiyev Abduraxmon. "MIKRO GIDROELEKTRSTANSIYALAR RIVOJLANISHIDA JAHON TAJRIBASI." (2023): 208-215.
- 14.Пирматов, Нурали Бердиярович, et al. "РАСЧЕТ ЧИСЛА И МОЩНОСТИ СОЛНЕЧНЫХ ПАНЕЛЕЙ ДЛЯ ВОЗБУЖДЕНИЯ "МИКРО" СИНХРОННЫХ ГЕНЕРАТОРОВ МАЛЫХ ГЭС." Universum: технические науки 4-10 (97) (2022): 41-44.

15.Sattarov, O. E., A. Mavlyanov, and A. An. "Effect of Manganese Atoms on the Magnetic Properties of Silicon." *Surface Engineering and Applied Electrochemistry* 59.2 (2023): 216-219.

16.Ан А. Д., Хусанов Ш. Х., Мадусманов А. ПРЕИМУЩЕСТВА И НЕДОСТАТКИ ВЫСОКОВОЛЬТНЫХ ЛИНИЙ ПОСТОЯННОГО ТОКА //Приоритетные направления инновационной деятельности в промышленности. – 2020. – С. 18-20.